数学与应用数学系

教授

简怀玉


简怀玉,澳门新莆京7906not教授,博士生导师

电子邮箱 hjian@tsinghua.edu.cn


研究方向

非线性偏微分方程和几何分析。在American Journal of  MathematicaAdvance in  MathematicsJ. Differential GeometryJ. Reine Angew Math (Crell)Siam J. Appl. MathSiam J. Math AnalCalculus Var & PDEIndiana Univ. Math J J. Functional AnalysisJ. Differential Equations Physica D等重要国际杂志上发表了80多篇论文; 应邀参加国际学术会议并在大会上做邀请报告近100余次。


教育经历

1979.9—1983.7:湖南师范大学数学系基础数学专业,获学士学位;

1985.9—1988.6:湖南大学应用数学系应用数学专业,获硕士学位;

1992.2—1994.6:清华大学数学系应用数学专业,获博士学位。


工作经历

1983.3—1985.8:湖南新邵一中,高中数学教师;

1988.7—1992.1:湖南怀化学院数学系,讲师,

1994.7—1996.10:中国科学院数学研究所,博士后;

1996.11—2000.6:清华大学数学系副教授;

2000.7—至今: 清华大学数学系教授;

国外半年以上工作经历

1995.08—1996.02:意大利国际理论物理中心和比萨大学访问学者;

1996.04—1996.10, 2012.01—2010.06:香港中文大学访问学者

2000.09—2001.07:美国哈佛大学高级访问学者;

2001.08—2002.02:美国田纳西大学研究教授;

2004.01—2004.06:美国康涅狄克大学访问教授;

2008.08—2009.02; 香港科技大学访问教授

2009.08—2010.02:新加坡国立大学访问教授;

1996.02—1996.08, 2010.02—2010.08, 2014.02—2014.08:澳大利亚国立大学研究员。


主要科研基金

1996—1999: 非线性抛物方程的粘性解,国家自然科学基金青年项目(No. 19701018);

20002005: 前沿数学的若干问题,国家科技部首届973项目

(No. G1999075);

20012004: 超导的漩涡运动与曲率流,国家教育部跨世纪人才

(No. JKH-[2001]-3);

20062010: 非线性椭圆和抛物型方程,国家自然科学基金重点项目(No. 10631020);

20112016: 非线性椭圆和抛物型方程,国家自然科学基金重点项目(No. 11131005)

20132018: 非常规油气介质中波传播的数学物理模型及其求解, 国家自然科学基金重大项目(No.41390452)

20182021:两类Monge-Ampere方程的研究,国家自然科学基金面上项目(No. 11771237);

20222026Monge-Ampere方程研究及其相关研究,国家自然科学科学基金重点专项项目(No. 12141103).


学术兼职:

1.学术期刊的编委:

数学进展 (2002-2014);

Northeastern Mathematical Journal (2004-2010);

Frontiers of Mathematics (2004-)

应用数学学报 (2006-)

纯粹数学与应用数学 (2011-).

2.中国工业与应用数学学会常务理事(2004-2008;2021-2025)和秘书长 (2004-2008).

3. Associate Member: International Center of Theoretical Physics, Italy (2005-2011).

4. 2021年和2022年国家自然科学基金会评专家.

部分学术论文:

[34] Jian Huaiyu, Wang Xianduo,  Sharp boundary regularity for some degenerate-singular Monge-Ampère equations on K-convex domain, J. Differential Equations, 382(2024), 97-114.

[33] Zhu Yongxing, Bao Weizhu, Jian Huaiyu, A Quantized vortex dynamics of nonlinear Schrodinger equations on torus with non-vanishing momentum, Physica D

453(2023), 133812.

[32] Jian Huaiyu, Tu Xushan, Liouville theorem for Neumann problem of Monge-Ampère equation.  J. Funct. Anal., 284 (2023) 109817, 1–52.

[31] Jian Huaiyu, Wang Xianduo, Generalized Liouville theorem for viscous solutions to a singular Monge-Ampère equation. Advance in Nonlinear Anal., 12(2023): 20220284, 1–11.

[30] Jian Huaiyu, Lu Jian, Wang Xu-Jia, Boundary expansion of solutions to nonlinear singular elliptic equations. Science China Math., 65 (2022), no.1, 9-30.

[29] Jian Huaiyu, Li You, Global regularity for minimal graphs in hyperbolic space. J. Differential Equations, 271 (2021), 963-978.

[28] Jian Huaiyu, Lu Jian, Existence of solutions to the Orlicz-Minkowski problem. Adv. Math., 344 (2019), 262–288.

[27] Jian Huaiyu, Li You, Optimal boundary regularity for a singular Monge- Ampère equation. J. Differential Equations , 264 (2018), no. 11, 6873–6890.  

[26] Jian Huaiyu, Lu Jian, Wang Xu-Jia, A priori estimates and existence of solutions to the prescribed centroaffine curvature problem. J. Funct. Anal. 274 (2018), no. 3, 826–862.

[25] Jian Huaiyu, Wang Xu-Jia, Zhao Yuwen, Global smoothness for a singular Monge-Ampère equation. J. Differential Equations, 263 (2017), no. 11, 7250–7262

[24] Jian Huaiyu, Lu Jian, Zhu Guangxian, Mirror symmetric solutions to the centro-

affine Minkowski problem. Calc.Var.Partial Differential Equations, 55 (2016), no. 2, Art. 41, 22 pp.

[23] Lu Jian, Jian Huaiyu, Topological degree method for the rotationally symmetric Lp-Minkowski problem. Discrete Contin. Dyn. Syst., 36 (2016), no.2, 971–980.

[22] Jian Huaiyu, Lu Jian, Wang Xu-Jia, Nonuniqueness of solutions to the Lp-Minkowski problem. Adv. Math., 281 (2015), 845–856.  

[21]Jian Huaiyu, Wang Xu-Jia, Optimal boundary regularity for nonlinear singular elliptic equations. Adv. Math., 251(2014), 111-126.

[20] Jian Huaiyu, Wang Xu-Jia, Entire solutions of Monge- Ampère equation and translating solutions to Gauss curvature flow. American J. Math., 136 (2014), no.4, 1093-1106.

[19] Bao Weizhu, Jian Huaiyu, Norbert J., Zhang Yong, Dimension reduction of the Schrodinger equation with Coulomb and anisotropic confining potentials. SIAM J. Appl. Math., 73(2013) no.6, 2100-2123.

[18] Jian Huaiyu, Wang Xu-Jia, Bernstein theorem and regularity for a class of Monge-Ampère equation. J. Differential Geometry, 93(2013), 431-469.

[17] Jian Huaiyu, Ju Hongjie, Existence of Translating solutions to the flow by the powers of mean curvature on unbounded domains. J. Differential Equations, 250 (2011), 3957-3987.

[16] Ju Hongjie, Lu Jian, Jian Huaiyu, Translating solutions to mean curvature flow with a forcing term in Minkowski Space. Comm. Pure Appl. Anal., 9 (2010), 963-973.

[15] Gui Changfeng, Jian Huaiyu, Ju Hongjie, Properties of translating solutions to mean curvature flow. Discrete and Continuous Dynamical Systems, 28 (2010) no.2, 441-453.

[14] Liu Yannan, Jian Huaiyu, Evolution of spacelike hypersurfaces by mean curvature minus external force field in Minkowski space. Advanced Nonlinear Studies, 9 (2009), 513- 522.

[13] Chen Xiuqing, Chen Li, Jian Huaiyu, Existence, Semiclassical Limit and Long-time Behavior of Weak Solution to Quantum Drift-diffusion Model. Nonlinear Analysis, Real World Application, 20 (2009), 1321-1342.

[12] Jian Huaiyu, Liu Yannan, Long-time existence of mean curvature flow with external force field. Pacific J. Math., 234 (2008), 311-324.

[11] Jian Huaiyu, Wang Xu-Jia, Continuity estimates for the Monge-Ampère equation. SIAM J. Math. Anal., 39 (2007), 608-626.

[10] Jian Huaiyu, Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differential Equations, 220 (2006), 147-162.

[9] Guan Bo, Jian Huaiyu, Schoen R., Entire spacelike convex hypersurfaces of constant Gauss curvature in Minkowski space. J. Reine Angew. Math., 595 (2006), 167-188.

[8] Jian Huaiyu, Hessian equations with Infinite Dirichlet Boundary Value. Indiana Univ. Math. J., 55 (2006), 1045-1062.

[7] Guan Bo, Jian Huaiyu, The Monge-Ampère equation with infinite boundary value. Pacific J. Math., 216 (2004), 77-84.

[6] Jian Huaiyu, Song Bingheng, The Vortex dynamics of a Ginzburg-Landau system in inhomogeneous supperconductors. J. Differential Equations, 170 (2001), 123-141.

[5] Jian Huaiyu, On the homogenization of degenerate parabolic equations. Acta Math Appl. Sinica. New Ser., 16 (2000) no.1, 100-110.

[4] Jian Huaiyu, Wang Xiaoping, Hsiech D. Y., The global attractor of a dissipative nonlinear system. J. Math. Anal. Appl., 238 (1999), 124-142.

[3] Jian Huaiyu, Deforming convex hypersurfaces to the hypersurfaces with prescribed harmonic mean curvature. Sci. China Ser. A, 42 (1999) no.10, 1059-1066.

[2] Hsiao L., Jian Huaiyu, On the asymptotic behavior of initial boundary value problems in one-dimensional nonlinear thermoviscoelasticity. Chinese Math. Ann. (Ser B),18 (1998) no.2, 143-152.

[1] Hsiao L., Jian Huaiyu, Global smooth solutions to the spatially periodic Cauchy problem for dissipative nonlinear evolution equations. J. Math. Anal. Appl., 213 (1997), 262-274.




Baidu
sogou